The Quantum Supremacy


(MENAFN- Asia Times) Diderot Klapowicz arrived early for the meeting with the National Security Adviser. The Marine guards behind the bulletproof glass at the State Place entrance checked his CIA ID against the guest register and waved him on through the walkway to the metal detector. He passed the West Wing on the right and continued on to the marble staircase that led to the Executive Office Building's main entrance. Built after the Civil War, the marble behemoth houses most of the White House staff. The West Wing is much smaller than it appears on television and houses the Oval Office and a rabbit-warren of rooms for the president's key aides. It is not much larger than a suburban split-level house, with the Oval Office at the center, the modest offices of the chief of staff and a few key advisers to the side, and the Situation Room underneath. The Executive Office Building, by contrast, is profligate with space. Klapowicz could hear his footsteps echo from the marble floor to the high ceilings. He thought of the Castle in Kafka's novel, peopled by anonymous messengers who entered and left in sealed coaches, forbidden to communicate with the inhabitants of the town below. Of course, the denizens of the Executive Office Building not only talk to the townspeople; given a chance, they will complain all day about how powerless they are and how pointless their jobs have become. Klapowicz bounded up the stairs, buoyed by a presentiment of great opportunity, privileged to sit in on a meeting with the National Security Adviser and his deputies. In place of his habitual thrift-shop attire, he wore a black suit that made him look like an attendant at a hipster funeral home. There were a dozen staffers gathered around the big table in the NSA's office and another dozen seated on chairs around it.

'Ladies and Gentlemen,' began the National Security Adviser, 'I have asked the Senior Director for Emerging Technologies to provide some background. For those who are as technically challenged as I am, the subject of quantum computing is intimidating, and I want to start with a simple explanation in layman's terms.'

An elderly man at the end of the table rose and looked awry at the gathered staff people as if they were sophomores at a Physics for Poets course. He began:

'People, welcome to the Revolution. It's rare that a man of my age can contemplate a new technology that will transform all of our lives, let alone help bring it into being, but I feel that I have that privilege. I am a scientist and can indulge in a sense of wonder. But you are men and women entrusted with securing the United States of America, and you require a sense of apprehension as well. I'm sure you have seen the film 'The Imitation Game,' about the code-breakers at Bletchley Park during World War II. It was the great good fortune of the Free World to have the services of the two great mathematicians who created the modern computer as we know it, the Englishman Alan Turing and the Jewish-Hungarian John von Neumann. The first computers were built as weapons, to break the codes of the German High Command. The first digital computer, the Colossus, broke the codes of the Lorenz cipher machine used by the German High Command, and Alan Turing's analog computer, the Bombe, broke the German Enigma machine.

'The computers on your desks have not changed in any fundamental way since then. They employ silicon chips containing millions of transistors rather than vacuum tubes or electro-mechanical devices, but they work in the same way. They know only two states: On or off, which we represent as a one or a zero. No matter how fast we make computers run, or how many transistors we concentrate onto chips, we are limited by the fact that the computer's vocabulary comes down to yes or now. We write programs which amount to, If yes, move onto the next step. If no, check again. Imagine a robot searching for a needle in a haystack that can only examine one thing at a time. It picks up a long thin object and asks if it is a straw or a needle. If it is a needle, the program concludes. If it is a straw, it picks up the next object. Computers can work very fast, and if there are ten million straws in the haystack, a modern computer might be able to locate the needle in seconds. But there are some questions for which the haystack is so enormous that even the fastest computers might take thousands of years to find the needle.

'There are any number of problems in science that involve the interaction of so many different influences that the number of possibilities baffles even the fastest computers. Hydrodynamics and aerodynamics are some of them; controlling a very large number of drones that mutually interact is another; weather forecasting, notoriously inaccurate, is a third case. But let me come back to the problem of cryptography, for which the first computers were invented. The Germans used mechanical devices, rather like the old mechanical slot machines, to generate codes and a very large number of permutations they produced indeed. Even the primitive computers of Bletchley Park were able to work through these many mechanical permutations quickly enough to read the Germans' secret messages a few hours after they were sent. But today's codes are not based on mechanics, but on basic properties of number theory. If you take a very large number, say, of a few hundred digits, it is laborious to discover its prime factors –the numbers that multiplied together make up your large number. The fastest supercomputer in the world might take centuries to arrive at a solution. That is the basis of all modern cryptography. The digital computer will spend many human lifetimes looking for the needle in the monster haystack.

'Now we have the prospect of a new physical basis for computation, one that is many millions as time as fast as today's fastest computers. The quantum computer's advantage over a conventional computer is greater than the conventional computer's advantage over an abacus. It will use entirely different physical principles and work in an entirely different way. It will solve problems that we cannot even set for ourselves using conventional computers. That is because quantum states are not a yes or no affair. Permit me a word of explanation. 'Quantum' is a confusing word for the physics in question. The term comes from Max Planck's discovery that light isn't continuous, but is emitted in packets with distinct values, or quanta. In the 1920s, a group of physicists learned that the subatomic particles that are the ultimate constituents of matter don't behave like billiard balls. We do not know exactly where they are, but we know the probability of particles being in a particular place and traveling at a particular speed. Even more, they don't act as individual particles but become entangled with other particles. Instead of a single particle in a single place traveling in a single direction at a single speed, we have a field of probabilities. Do not ask me to explain it. No-one has a sensible explanation of why any of this should be the case. America's greatest quantum physicist Richard Feynman, who first proposed quantum computers, said that no-one understands quantum mechanics.

'Even if we don't understand it, we can use quantum mechanics. Conventional computers use bits of data, which are either a yes or a no, a one or a zero. A quantum computer uses quantum bits, or what we call qubits. A qubit is an electron in a magnetic field that might spin one way and might spin another. Instead of a yes or no, it is a set of probabilities. What does this mean for computational power? Let me oversimplify: In a conventional computer we add transistors, that is, yes-or-no devices, to add processing power; the more transistors, the more computations per second we can do. But computation power increases by the square of the number of qubits we add. Instead of 1, 2, 3, 4, 5, and so forth, we have 12, 22, 32, 42, and so forth. That grows rather quickly, at 2500 we have a number many times larger than all the atoms in the known universe. But it isn't only speed. Eric Ladizinsky, an entrepreneur who founded a company that makes quantum computer prototypes, offered a thought experiment: Suppose you have to find an X drawn on a page of one of the 50 million volumes in the Library of Congress. A conventional computer would search page by page looking for the X, and it would take a very long time. Suppose instead that you could split yourself into 50 million avatars each of whom looked through one book. That is quantum computing.

'What vistas this will open for mankind are impossible to imagine – designer drugs that optimize a cure for every individual patient, new materials made to order, genetic sequencing to isolate prospective causes of disease. Machine learning for Artificial Intelligence applications will become nearly instantaneous. And, of course, we will be able to break any code generated by existing number theory in a very short period of time. We've known that in theory since 1994.'

The Senior Director looked around the room and sat down.

'Questions?' the National Security Adviser asked.

A uniformed officer in the back raised his hand. 'Director, what exactly is meant by quantum supremacy?'

The old man said, 'It simply means a quantum computer that can solve problems that existing computers can't solve in any reasonable period of time.'

'Who is going to decide that?' asked the National Security Adviser's chief of staff, an elegant woman in a high-collared blouse.

'As matters stand, that would be NASA,' the senior director replied. 'Google claimed last year that it had a quantum chip with 72 qubits, code-named Bristlecone, that could achieve quantum supremacy, and it signed an agreement with the space agency to analyze its results and compare it to simulations on an ordinary supercomputer. Google's claim has been disputed. Researchers at the Chinese company Alibaba claimed that a conventional supercomputer could do as well.'

'I'll abuse my chairman's privilege to ask the next question: What's holding us back?'

The Senior Director smiled. 'What isn't? Quantum relationships are very unstable. The sort of particle interactions that make up a qubit only exist a near absolute zero – that's 460 degrees Fahrenheit below zero. That's because particles don't move very much at absolute zero, and we need them to be still when we add energy to move them from one state to another. Otherwise, we'd never be able to measure the change in state. At any higher temperature, there are so many little packets of energy flying around that something besides human instructions could cause a change in state. So the computer has to be surrounded by a souped-up air conditioning system, using a coolant like liquid helium. Even at absolute zero, qubits are unstable and yield high error rates. Some scientists think that building a network of interconnected cubits will help reduce errors, they aren't there yet. A barely detectable magnetic field or stray pulse of microwave energy makes them do bit-flips' – there was some laughter – 'or phase-flips that reverse the information in their states.'

Diderot called out from the back, 'How would you define the term 'quantum surprise'?'

The Senior Director frowned. 'I would define it as our worst nightmare. Let's say that China, or Russia, had achieved quantum supremacy, but kept it secret. They would be able to read our encrypt cable data for years. It wouldn't only involve classified military communications. Every corporate secret kept in the Cloud would be at risk, as well as the personal data of Americans. We literally would be stripped bare of protection for every personal, corporate and government secret, without knowing that it was happening.'

The National Security Adviser took off his glasses and rubbed his eyes. 'I want a quantum surprise risk assessment on my desk in three weeks.'

Klapowicz and Jerzy Nowak sat in the office of D/NCS in his Langley office as the winter sun faded that afternoon. 'I've grown grey in the service of this Agency,' D/NCS said, 'and I've seen this happen too many times. I was born in '61, the year that the Cubans made mincemeat of the Bay of Pigs invasion, and Jack Kennedy fired the entire top brass on the same day – Allen Dulles, Richard Bissell and Charles Cabell. I was a teenager when Ford canned Bill Colby out in the Halloween Massacre. There's always a trapdoor under your chair in this building. We may be looking at the worst intelligence failure in the history of this organization. And we're running blind. We have virtually nothing left on the ground in China after the 2016 disaster, except in Xinjiang. Now we get a walk-in, the biggest defection we've ever had from the PRC, precisely at the moment we most need it. Anything that looks too good to be true, is too good to be true.'

'So what are we going to do with it? Nowak asked.

'We're going to grab it, gift-wrap it and put it under the Christmas tree for the National Security Adviser. Two will get you twenty it's tainted goods, but it just might buy us enough time to come up with something solid. Remember, if this goes bad, you boys will be right behind me picking up your unemployment checks.'

Copyright: Spengler, David P. Goldman, The Quantum Supremacy

Catch-up link: Read Part One here . Read Part Two here.

Next week: Chapter 7 – The Bid

About the Author: David P. Goldman has written the 'Spengler' column at Asia Times since 2001. His previous books include How Civilizations Die (and Why Islam is Dying, Too) and It's Not the End of the World, It's Just the End of You. He has published extensively in major media including The Wall Street Journal, The Journal of American Affairs, The American Interest, First Things, Tablet Magazine and PJ Media. He has directed major research groups at Bank of America, Credit Suisse and Cantor Fitzgerald, and received Institutional Investor Magazine's award for research excellence. He consulted for the National Security Council during the first Reagan Administration and for the Defense Department's Office of Net Assessment during 2011-2013. From 2013 to 2016, he was a managing director at Reorient Group, a Hong Kong investment bank, and has published and lectured extensively about China. This is his first work of fiction.

'Ask anyone in the intelligence business to name the world's most brilliant intelligence service and we'll all give the same answer: Oswald Spengler. David P. Goldman's 'Spengler' columns provide more insight than the CIA, MI6, and the Mossad combined.' – Herbert E. Meyer, special assistant to the director of Central Intelligence and vice chairman of the CIA's National Intelligence Council in the Reagan administration.

MENAFN1204201901590000ID1098379843


Asia Times

Legal Disclaimer:
MENAFN provides the information “as is” without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the provider above.