Predictive Oncology Announces Positive Results From Ovarian Cancer Study With UPMC Magee-Womens Hospital To Be Presented At The 2024 American Society Of Clinical Oncology (ASCO) Annual Meeting
| Title: | Using Artificial Intelligence-Powered Evidence-Based Molecular Decision-Making for Improved Outcomes in Ovarian Cancer |
| Abstract #: | 448976 |
| Session: | Gynecologic Cancer |
| Date/time: | Monday, June 3rd, 9:00am-12:00pm CDT (10:00am-1:00pm EDT) |
| Presenter: | Dr. Brian Christopher Orr, MD, MS, Gynecologic Oncologist at the Hollings Cancer Center, Assistant Professor, Medical University of South Carolina |
Summary:
The study analyzed clinical data and tumor specimens from 2010-2016. Patient data, whole exome sequencing (WES), whole transcriptome sequencing (WTS), drug response profile, and digital pathology profile were used as input feature sets for training the 160 multi-omic machine learning (ML) models that were built as part of the study. Hypothesis-free training of the ML models was utilized to classify patient survival at two-year and five-year threshold. Model performance was estimated using AUROC (area under the receiver operating characteristic curve) metric, with scores greater than 0.5 having higher prediction potential.
Results:
Of the 160 ML models built, seven were found to achieve high prediction accuracy at the two-year threshold, and 13 at the five-year threshold. Multi-omic feature set inputs led to superior prediction and improved performance over clinical data alone, and top performing models predicted better than any feature set in isolation.
Conclusion:
Utilizing multi-omic machine learning models, superior prediction of short- and long-term survival was achieved as compared to clinical data alone. The specific drivers of the top performing models were different for the short- and long-term cohorts, identifying future research opportunities as well as development potential of a clinical decision tool.
The full 2024 ASCO Program Guide can be found here .
About Predictive Oncology
Predictive Oncology is on the cutting edge of the rapidly growing use of artificial intelligence and machine learning to expedite early drug discovery and enable drug development for the benefit of cancer patients worldwide. The company's scientifically validated AI platform, PEDAL, is able to predict with 92% accuracy if a tumor sample will respond to a certain drug compound, allowing for a more informed selection of drug/tumor type combinations for subsequent in-vitro testing. Together with the company's vast biobank of more than 150,000 assay-capable heterogenous human tumor samples, Predictive Oncology offers its academic and industry partners one of the industry's broadest AI-based drug discovery solutions, further complimented by its wholly owned CLIA lab and GMP facilities. Predictive Oncology is headquartered in Pittsburgh, PA.
Investor Relations Contact
Tim McCarthy
LifeSci Advisors, LLC
...
Forward-Looking Statements:
Certain matters discussed in this release contain forward-looking statements. These forward- looking statements reflect our current expectations and projections about future events and are subject to substantial risks, uncertainties and assumptions about our operations and the investments we make. All statements, other than statements of historical facts, included in this press release regarding our strategy, future operations, future financial position, future revenue and financial performance, projected costs, prospects, changes in management, plans and objectives of management are forward-looking statements. The words“anticipate,”“believe,”“estimate,”“expect,”“intend,”“may,”“plan,”“would,”“target” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Our actual future performance may materially differ from that contemplated by the forward-looking statements as a result of a variety of factors including, among other things, factors discussed under the heading“Risk Factors” in our filings with the SEC. Except as expressly required by law, the Company disclaims any intent or obligation to update these forward-looking statements.
Legal Disclaimer:
MENAFN provides the
information “as is” without warranty of any kind. We do not accept
any responsibility or liability for the accuracy, content, images,
videos, licenses, completeness, legality, or reliability of the information
contained in this article. If you have any complaints or copyright
issues related to this article, kindly contact the provider above.

Comments
No comment