(MENAFN- ACN NewsWire) World's first high-standard negative-pressure isolation ward built with MiC technology completes historical mission
Laid solid foundation for modular design in isolation facility construction Technology
HONG KONG, Dec 30, 2024 - (ACN Newswire) – Hong Kong's healthcare engineering sectors have actively responded to the Hong Kong SAR Government's efforts to promote advanced and modern construction technologies for fostering efficient building construction practices. In 2020, the industry adopted the innovative“Modular Integrated Construction” (MiC) technology, coupled with the“Multi-trade Integrated Mechanical, Electrical and Plumbing” (MiMEP) construction method, to construct the world's first high-standard negative-pressure isolation ward module that could be assembled and deployed fast and easy. The module was repurposed for anti-epidemic use during the first wave of the COVID-19 pandemic that year. After the pandemic, the negative-pressure isolation ward module was put on public display at the CIC-Zero Carbon Park in Kowloon Bay to promote the MiC construction method. When the about two-year display ends in 2025, parts of the module will be recycled for purposes including reuse and further research. The project has demonstrated the immense potential of innovative engineering technologies in serving public health needs and laid a solid foundation for modular design in constructing infectious disease isolation facilities.
The engineering sector in Hong Kong putting all heads together, applying innovative thinking and technologies, contributed to the fight against the COVID-19 pandemic raging in 2020.
It took the industry only four months, starting from initial sketching to completing the project, to deliver in May 2020 a negative-pressure isolation ward meets hospital-grade standards, the first of its kind globally and was later hailed as the“Hong Kong version of Huoshenshan Hospital.” The facility exemplified the professionalism, innovative spirit, and rapid crisis response capabilities of Hong Kong's engineering sector. Moreover, it has provided a significant reference model for the concerned global community in addressing similar events.
The project used advanced MiC technology, plus the MiMEP construction method, which together significantly enhanced construction efficiency, shortening the entire construction cycle to just about a month. MiC technology enabled close to 80% of the construction process to be prefabricated in factories before being transported to the site for rapid assembly, adjustment, and testing. The approach not only drastically reduced on-site construction time, but also ensured high-quality standards and sustainability. Rigorous ventilation tests verified that the isolation ward could provide an effective negative-pressure environment, efficiently blocking the spread of highly infectious airborne viral particles. A distinctive feature of the design is it does not rely on a centralised air conditioning system with extensive external ventilation ducts. Instead, the MiMEP system's built-in ventilation and air conditioning provide a self-sufficient airflow design, effectively controlling infection. Given her limited land resources, Hong Kong needs designs that can fit into small spaces, and the project was then a“highly condensed design” unprecedented in the world.
Ir Prof P L YUEN, Past President of the Hong Kong Institution of Engineers (HKIE), Past Vice President of the United Kingdom Chartered Institution of Building Services Engineers (CIBSE), and Chairman of the Hong Kong Branch of the United Kingdom Institute of Healthcare Engineering and Estate Management (IHEEM), said,“Inspired by the country's 'Huoshenshan' project at the time, we began exploring how to construct high-standard isolation wards for limited spaces. The design required interlocking double-door control to precisely regulate airflow. To ease transportation, using the dimensions like those of a standard shipping container in our blueprint was an ideal option. By integrating MiC and MiMEP construction methods, we achieved a self-sufficient ventilation and air-conditioning design for the ward, matching with a compact electrical and mechanical module to supply its power and other engineering services demand. That innovative design was also the world's first at the time." Prof Yuen also shared this design with fellow engineers, fostering collaboration to construct more suitable isolation facilities.
Professor Yuen added, "The successful project shows that engineering innovation has a vital role to play in addressing public health challenges. While this project has fulfilled its historical mission, it is not the end. I hope it will encourage wider adoption of the proven method, novel and efficient, in other advanced building projects, which the Government is keen to promote. Furthermore, I hope it will inspire more local engineers to embrace innovation and technology, and together show and tell the many success stories of Hong Kong engineering."
MENAFN30122024002725003249ID1109042692
Legal Disclaimer:
MENAFN provides the information “as is” without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the provider above.