INST Mohali's New Tech To Create Cost-Effective Devices For Wearable Applications
Their droplet microfluidics technology will help produce microspheres with a high electroactive (EA) phase that can lead to piezoelectric devices for wearable applications, serving as self-powered sensors for monitoring diverse physiological signals.
"Integration of this technology into wearables opens new pathways for efficient energy harvesting from human motion, paving the way for sustainable and self-sufficient wearable devices," said the researchers.
“The method offers numerous advantages, including simplicity, cost-effectiveness, high efficiency, and control, making it highly significant for applications in the biomedical sector, self-powered devices, and beyond," they added.
The technology, when combined with the off-chip thermal polymerisation technique, helps synthesise tunable Polyvinylidene fluoride (PVDF) microspheres to engineer a high EA phase.
Polymer microspheres, notable for their increased surface area and enhanced interface capabilities, have attracted substantial interest. However, existing methods for their production possess drawbacks such as shape irregularities and high energy requirements. To address these limitations, microfluidic techniques have emerged, offering benefits like tunability, size and shape control, and efficiency.
Over the past years, microspheres of PVDF have been produced via microfluidics but the presence of high EA phase in them remains a challenge.
In the study, the team from INST engineered the high EA phase of microspheres through flow rates of oil and polymer solution in the microfluidic device and extensive characterisation was carried out to verify the piezoelectric response of the microspheres. The team brought about uniformity and size control (126-754 micrometres) of the microspheres. By adjusting flow rates and optimising reaction temperature, the EA phase was enhanced to around 82 per cent.
In addition, artificial intelligence (AI) was used as a vital tool in enabling accurate predictions for microsphere diameter and phases, reducing the need for extensive laboratory optimisation before droplet generation in microfluidics. The study was recently published in the Chemical Engineering Journal.

Legal Disclaimer:
MENAFN provides the
information “as is” without warranty of any kind. We do not accept
any responsibility or liability for the accuracy, content, images,
videos, licenses, completeness, legality, or reliability of the information
contained in this article. If you have any complaints or copyright
issues related to this article, kindly contact the provider above.
Most popular stories
Market Research

- 1Inch Unlocks Access To Tokenized Rwas Via Swap API
- What Is The Growth Rate Of The Europe Baby Food And Infant Formula Market In 2025?
- BTCC Announces Participation In Token2049 Singapore 2025, Showcasing NBA Collaboration With Jaren Jackson Jr.
- Ecosync & Carboncore Launch Full Stages Refi Infrastructure Linking Carbon Credits With Web3
- New Silver Launches In California And Boston
- United States Fin Fish Market Size Forecast With Demand Outlook 20252033
Comments
No comment