
Sungrow Outlines 10 Must-Know Technological Trends Driving Solar And Storage Development
Drawing on his deep understanding of the industry, Dr. Zhao identified ten crucial technological trends essential for advancing solar and storage development.
1. High Density and High Efficiency
With the declining costs and increased localization of third-generation wide-bandgap semiconductors, inverters are progressively incorporating Silicon Carbide (SiC) and Gallium Nitride (GaN) devices. Enhanced by advanced control algorithms, increased computing power, and novel thermal packaging technologies, these changes will significantly boost the power density and efficiency of equipment. Sungrow was at the forefront of commercializing SiC devices in PV inverters. In 2021, the company introduced the 1500V string inverter SG350HX, marking a pioneering move with the adoption of 2000V SiC devices.
2. Development of High-Voltage and High-Power Systems
Over the past decade, inverter single-unit power has undergone a major improvement cycle every 2-3 years, with DC voltage moving toward 2000V. Sungrow deployed the world's first 2000V DC PV system in China's Shaanxi province, reducing Balance of System (BOS) costs by over 0.04 yuan (USD cent 0.55) per watt compared to 1500V systems, setting a new industry benchmark for cost reduction and efficiency improvement.
3. Grid Forming
As renewable energy penetration increases, grid-forming technologies are becoming essential to ensure a flexible, reliable, and resilient power system. Since 2006, Sungrow has been at the forefront of grid-forming technology research, honing core capabilities such as flexible inertia support, wide-frequency oscillation suppression, enhanced continuous high/low voltage ride-through, microsecond-level voltage construction, adaptive harmonic management, rapid off-grid debugging, seamless switch between on-grid and off-grid modes, and gigawatt-scale project black-start technology. Sungrow has abundant global grid-forming practices, providing customized solutions tailored to diverse grid conditions, ensuring grid safety and stability worldwide.
4. Digitalization and AI Empowerment
Digitalization and AI are revolutionizing the entire lifecycle of PV plants, boosting both reliability and operational efficiency. Sungrow has utilized advanced AI training techniques for inverters to create a sophisticated AI-driven battery management system.
This system constantly tracks and analyzes multiple parameters of battery cell states, such as temperature, current, voltage, and pressure. By doing so, it enables real-time health assessments, offers early alerts for cells showing signs of potential issues, and prevents the onset of thermal runaway, significantly improving the safety and performance of PV installations.
5. Secure and Reliable Systems
Dr. Zhao noted that a 30-year system design lifespan is set to become a new trend and standard for future inverters. He outlined more than a dozen advanced designs and technologies integral to system security and reliability, including modular design, multi-tier active fault alarms, arc detection, and shutdown mechanisms.
In addition, Sungrow invested in two large-scale, real-world energy storage system burn tests, each costing over 10 million yuan (approx. USD 1.4 million), to affirm the safety of its liquid-cooled energy storage system PowerTitan series. These tests safeguard personnel, assets, and operational safety, setting a new safety benchmark for the energy storage industry.
6. Topology Innovation
Topology innovation plays a crucial role in enhancing power conversion efficiency. In 2018, Sungrow spearheaded a major R&D project and developed the world's first 6MW 35kV Solid State Transformer based (SST-based) PV inverter. This inverter replaced traditional low-frequency transformer with a high-frequency one, achieving an overall maximum efficiency of 98.5%. This is just one instance of how innovative topologies are continually evolving and being applied across various solar and storage applications.
7. High-Precision Simulation
For different global scenarios and grid conditions, system-level modeling and simulation capabilities are needed to mimic the performance of solar, wind, and storage systems in on-grid/off-grid and steady-state/transient processes. As simulation systems evolve, they will increasingly approximate real-world conditions, significantly shortening inverter and power system development cycles while reducing costs.
8. Virtual Power Plants
Virtual power plants (VPPs) leverage internet technologies to aggregate distributed PV, energy storage, and loads into a unified entity for grid dispatch. VPPs optimize energy utilization, promote clean energy consumption, reduce grid congestion and negative pricing, and enable control in patches for grid ancillary services, ensuring rapid response and grid stability. This significantly reduces grid construction and operational costs. By leveraging real-time monitoring and demand forecasting, VPPs can guide users to optimize their electricity consumption, and, by doing so, enhance supply reliability.
9. Source-Grid-Load-Storage-Carbon Integration
Dr. Zhao proposed, for the first time in the industry, that integrated management of source-grid-load-storage-carbon systems can promote large-scale clean energy integration, reduce curtailment, and achieve clear carbon reduction goals.
He cited as an illustration how Sungrow is providing integrated solutions for the world's largest 2.2GW wind-PV-storage-hydrogen multi-energy complementary microgrid project in Saudi Arabia. He further commented that 2025 will mark the beginning of zero-carbon parks, with source-grid-load-storage-carbon integration becoming the preferred solution.
10. Green Hydrogen, Ammonia, and Methanol
The global demand for green hydrogen is soaring, and renewable energy-based electrolysis represents a critical future pathway. Moreover, ammonia and methanol are becoming increasingly popular due to their ease of storage and transport. Decoupling power generation from hydrogen production systems allows for the remote production of hydrogen through power transmission.
Hydrogen production rectifiers, designed with fast dynamic response capabilities, are adept at managing the power fluctuations inherent in renewable energy sources. These features make them well-suited for use in large-scale renewable hydrogen production facilities and central hydrogen production stations.
"Sungrow embeds technological innovation in our DNA. We commit to tackle the difficulties and pursue a long-term sustainable future with industry partners and peers," concluded Dr. Zhao.
About Sungrow
Sungrow, a global leader in renewable energy technology, has pioneered sustainable power solutions for over 28 years. As of December 2024, Sungrow has installed 740 GW of power electronic converters worldwide. The Company is recognized as the world's No. 1 on PV inverter shipments (S&P Global Commodity Insights) and the world's most bankable energy storage company (BloombergNEF). Its innovations power clean energy projects in over 180 countries, supported by a network of 520 service outlets guaranteeing excellent customer experience. At Sungrow, we're committed to bridging to a sustainable future through cutting-edge technology and unparalleled service. For more information, please visit: .
SOURCE Sungrow Power Supply Co., Ltd.

Legal Disclaimer:
MENAFN provides the information “as is” without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the provider above.
Comments
No comment